
White Paper

OpenDXL
Idea Book

Fifteen Easy Ways to Integrate, Orchestrate,
and Expedite Security Operations

OpenDXL Idea Book 2

White Paper

Table of Contents
Overview . 3

What Is OpenDXL? . 4

What Makes OpenDXL Unique? . 4

How Does It Work? . 4

OpenDXL Use Cases: A World of Possibility . 4

Master example: Six products, four vendors, total automation . 5

Use Case 1: Extracting more value from existing security investments . 6

Use Case 2: Integration with a SIEM leveraging a TAXII bus . 8

Intel Security Innovation Alliance Integration . 9

Use Case 3: Broadcasting TrapX honeypot data to McAfee Advanced Threat
Defense and other subscribers . 9

Use Case 4: Using McAfee ePO automation to act on high-confidence detection
information from other security products .10

And 10 More Ideas .11

Summary .12

APPENDIX .12

Build Your Own OpenDXL Integration .12

Example of an OpenDXL Integration Scenario .13

Reality Check: OpenDXL versus Other Integration Models .14

OpenDXL Idea Book 3

White Paper

Goals of the OpenDXL
Initiative

 ■ Increase integration ease
and flexibility.

 ■ Provide a simple set
of tools to speed
development.

 ■ Improve security
operations’ ability to
create cross-product,
cross-vendor security
automation.

 ■ Protect organizations’
integration efforts by
immunizing them from
API changes by product
vendors.

Overview
The rapid pace of attacks and shortage of expert security talent have driven the security industry
to embrace the notion of pooling data resources and orchestrating actions across vendors, open
source projects, and internal development efforts. Much like a neighborhood watch, sharing threat
information and codifying procedures will make the community as a whole—vendors, industry
leaders, and enterprises—stronger and better able to fend off advanced, evolving threats with
greater speed and accuracy.

Better intelligence also improves security detection and response. And, beyond sharing data,
multiple systems need to collaborate to create a concerted response, from prioritization to
containment to remediation, along with an improvement in security controls and protections.

While there are clear advantages to sharing threat data and organizing heterogeneous applications
and security operations into systems, there are also some significant challenges:

 ■ Security and IT infrastructures, which have been built up over many years from
disparate technologies, vendors, and in-house applications, are complex, with fragile
connections.

 ■ At times, integrations between products from different vendors don’t do exactly what
an enterprise has in mind, or the organization’s needs change or expand over time and
vendor offerings don’t keep up.

 ■ Point-to-point, API-led product integrations are time-consuming to build and difficult
to maintain as you upgrade product versions and data formats.

 ■ To integrate security products, vendors have to go through a process of negotiation,
agreement, and implementation, which takes a great deal of time and leaves enterprises
at the mercy of vendor priorities and market forces.

 ■ Traditional REST APIs do not efficiently support real-time notifications. The traditional
approach is to implement polling and scheduled data publishing models that incur
processing overhead and a time delay in responding to critical events.

 ■ Without easy access to data—such as context or emerging threat intelligence—or a
simple way to invoke another service, applications can’t apply the insights that could
make them more effective against emerging threats.

In response to this set of hurdles, Intel Security developed the McAfee® Data Exchange Layer (DXL),
which overcomes much of the complexity of integration and enables high-speed communication
between applications. Over the past several years, this technology matured as it was being used to
connect Intel Security products and Intel® Security Innovation Alliance partner products.

Having proven that the software is ready, Intel Security launched the OpenDXL initiative to put
the power of integration and automation in your hands by providing open source tools, expertise,
and a supportive community. Now, any application, whether homegrown or vendor supplied,
can tap into the real-time capabilities of the DXL communications fabric, extending the reach of
every other integrated system. The goals of the OpenDXL initiative are to increase integration
ease and flexibility; to provide a simple set of tools to speed development; and to offer creative
opportunities for developers in order to improve security operations by leveraging applications
from open source, in-house developers, and the commercial development community.

OpenDXL Idea Book 4

White Paper

What Is OpenDXL?
Open Data Exchange Layer (OpenDXL) allows developers and scripters to connect products
throughout an organization’s security infrastructure and accelerate the threat defense lifecycle.
With access to data and triggers from multiple sources delivered in milliseconds over the McAfee
DXL communications fabric, everyone benefits from more precise analysis and orchestration of
security actions with IT systems. OpenDXL also provides opportunities for more rapid and flexible
security infrastructure. Enterprises have a way to achieve integrations between competing products
as well as niche applications and open source projects, connections that would typically not occur
under standard market conditions.

What Makes OpenDXL Unique?
Commonly, security teams and vendors integrate applications through slow and tedious one-
to-one integrations, manual scripts, and scheduled processes. With OpenDXL, these processes
become a thing of the past. Instead of a series of individual integrations, all components connect
to the DXL, a fast and simple messaging bus that allows for bi-directional sharing with other
connected systems. Best of all, you only have to integrate once to the DXL fabric to obtain access
to all of the applications that are using the fabric. Another key advantage of OpenDXL integration
compared to other methods is high-speed sharing of vital security events. This improves time to
detection, containment, and remediation—the key performance metrics for security operations.

How Does It Work?
Applications publish and subscribe to message topics or make calls to DXL services in a request/
response invocation, which is similar to the RESTful APIs typically used for developing web
services. The OpenDXL fabric delivers the messages and calls immediately, connecting an
enterprise’s security, IT, and in-house solutions into a coordinated and orchestrated ecosystem. If
there are changes to the publishing or receiving applications, the DXL abstraction layer insulates
the rest of the deployment from the change, reducing risk and the cost of integration maintenance.

OpenDXL Use Cases: A World of Possibility
There are already numerous DXL integrations developed by Intel Security, our partners, and our
customers. Some data types applications publish over DXL today include:

 ■ Deception threat events.

 ■ File and application reputation changes.

 ■ Mobile devices and assets discovered.

 ■ Network and user behavior changes.

 ■ High-fidelity alerts.

Vulnerability and indicator of compromise (IoC) data.

We hope that the open source tools available on GitHub.com/opendxl and the use cases presented
below will inspire more developers and organizations to come up with new applications for this
powerful and versatile technology.

To give you an idea of the types of integrations made possible by OpenDXL, we will walk through a
detailed integration. Then we will explore more use cases that apply these concepts and others to
solve various problems.

Seven Key Advantages
of OpenDXL
OpenDXL provides seven
key values that make it
the protocol of choice for
security messaging:

 ■ Real-time exchange of
security-relevant data
enables automated
orchestration of cross-
vendor security defenses.

 ■ Multiple messaging
patterns for
comprehensive, integrated
security, including publish/
subscribe for one-to-many
messaging and request/
response for one-to-one
messaging with a service.

 ■ Services simplify access
and expand availability of
security and management
technologies to all
connected clients.

 ■ Support for diverse use
cases enables a single
OpenDXL fabric to handle
all of a company’s security
messaging requirements
with no need for multiple
solutions.

 ■ Enhanced security built
into DXL addresses one of
the top gaps reported for
commonly used transport
protocols.

 ■ The integration abstraction
layer protects developers’
investments by providing
a single integration
API across supported
protocols, so integrations
stay active longer and
require less maintenance
due to API changes

 ■ Superior manageability
through the McAfee ePO
platform.

https://github.com/opendxl

OpenDXL Idea Book 5

White Paper

Master example: Six products, four vendors, total automation
In November 2016, we demonstrated an OpenDXL orchestration integration sharing intelligence
across multiple vendors’ products, then coordinating responses and policy enforcements. (Click here
to view the demo.) Thanks to automation capabilities, the entire process described below occurs
in just seconds. The basic idea is that the firewall’s detection of a single command and control
communication leads to several simultaneous containment and remediation actions that affect the
original host (whose outbound communication triggered the alert), as well as other endpoints.

Figure 1. Orchestration with OpenDXL.

 ■ Step 1: Detection—Malware is launched on an infected endpoint, connecting to a known
Command and Control Server identified by Check Point Anti-Bot. Check Point’s firewall
notes the traffic to a known malicious command and control server. Check Point’s
firewall publishes an OpenDXL event.

 ■ Step 2: Identification—The OpenDXL orchestration script has been listening over DXL.
It receives the event, and then queries McAfee Active Response to identify, from the
source system, which executable made the outbound connection. This allows us to
move from just knowing network information (source, destination, port, and more) to file
information. And, since McAfee Active Response maintains a historical record of network
connections, this will succeed even if the process is no longer running. This provides
additional data for Step 4: Scoping.

 ■ Step 3: Containment—The OpenDXL orchestration script then sets the reputation of
the file it has identified to “known malicious” in McAfee Threat Intelligence Exchange.
McAfee Threat Intelligence Exchange then broadcasts this new information over DXL,
directing McAfee Threat Intelligence Exchange clients to kill the malware processes, thus
disconnecting the communications. Note that this will apply to any system running the
convicted process.

 ■ Step 4: Scoping—Although not shown in the demo, McAfee Active Response can be
leveraged to find other processes that connected to the same command and control
server or other dormant instances of the files that either have not been executed or are
no longer running and then remove them.

 ■ Step 5: Tagging—To complete the cleanup, the systems that McAfee® Active Response
has identified as containing malware are tagged in McAfee ePO software by the
orchestration script as a hook to allow further activity by the administrator.

Malicious
Site

Infected
Endpoint

OpenDXL
Orchestration

Script

McAfee
ePO

McAfee Threat
Intelligence

(TIE)

McAfee Active
Response

(MAR)

Rapid7
Nexpose

Aruba ClearPass
Policy Manager

Data
Exchange
Layer

• TIE Client Module
• MAR Client Module

Check Point
Firewall

!

https://www.youtube.com/watch?v=mbamFKgtqZY

OpenDXL Idea Book 6

White Paper

 ■ Step 6: Assessment—The orchestration script triggers a vulnerability scan reaction
by Rapid7 Nexpose as a final step to identify all the weaknesses in the compromised
systems that could also be exploited.

 ■ Step 7: Remediation—The orchestration script sends a request to the Aruba ClearPass
OpenDXL service to update attributes for systems exposed to malware, which triggers
policy enforcement, which can quarantine the device from the network while detailed
remediation occurs.

This example results in several positive outcomes:

 ■ More rapid integration of multiple products from different vendors: Lightweight
Python clients and the one-to-many OpenDXL service wrappers reduce the burden on
in-house developers.

 ■ Richer threat intelligence from multiple sources: The integration increases the ability of
all products in a multivendor environment to detect, protect, and correct faster and more
accurately.

 ■ Dramatic improvement in operational efficiency of the security infrastructure: This
results in stronger ROI on investment in security tools.

Behind the Scenes
To create this demo, the team used existing APIs to build simple connectors or “service wrappers,”
to use OpenDXL terminology, for each of the third-party applications, Check Point, Rapid 7, and HP
Aruba, as well as three Intel Security products: McAfee Threat Intelligence Exchange, McAfee Active
Response, and McAfee ePO software. Then, the team scripted these connectors together into a
logic-driven flow that ordered the appropriate action based on the data being sent over DXL.

Service wrappers are used to enable integration of data and processes across multiple tools by
exposing existing APIs as DXL services. They provide a lightweight alternative to native Python,
C++, or Java integrations. These service wrappers enable non-DXL-integrated APIs of Rapid 7 and
HP Aruba functionality to be called via DXL. The Python clients simplify the process of querying
endpoints in the enterprise environment, reducing the integration effort from 120 lines of code (with
pure OpenDXL) to 20 lines of code (with the McAfee Active Response open source Python client).

We have published these service wrappers on GitHub.com/opendxl for use as building blocks for
your integrations. Just as we took advantage of simple McAfee Active Response searches without
having to focus on lower-level details, such as McAfee Active Response-specific DXL topics and
message formats, other applications can do so as well. Several of the examples below illustrate the
power of integrating with McAfee Threat Intelligence Exchange reputation services and the McAfee
ePO management APIs to simplify access to endpoint policy and enforcements.

Let’s look at other examples that use these and other DXL-based software elements to expedite
security operations.

Use Case 1: Extracting more value from existing security investments
Description: A major insurance company with 70,000 endpoints located in various locations
across the global was looking to derive greater value from their Palo Alto Networks firewall and
Proofpoint email gateways. At the time, these solutions were compartmentalized—they had little or
no interaction with the organization’s Intel Security endpoint and data defenses. Prior to the release
of OpenDXL, the organization was unable to find a well-supported, proven, and widely adopted
standard that was able to measurably improve its risk profile out of the box.

https://github.com/opendxl

OpenDXL Idea Book 7

White Paper

Committed to maturing its security infrastructure and evolving from reactive, firefighting mode to a
big-picture, proactive approach, the company wanted to leverage threat intelligence and detections
generated by their network and email gateway products and distribute this data to the rest of their
security toolsets. An immediate desire was to have their endpoints react to this threat intelligence
in order to improve their protective and investigative capabilities. The endpoints were protected by
Intel Security endpoint and data loss prevention technologies and by McAfee Active Response. The
OpenDXL announcement prompted the company to adopt McAfee Threat Intelligence Exchange.

Technical approach: The team of in-house developers were SOC analysts who were competent in
coding, but not typically engaged in this activity on a day-to-day basis. They were familiar with the
simple-to-code Python language. The company used the OpenDXL Python client and adapted the

“openweather_service_wrapper.py” from OpenDXL.com/Github to create a connection to RESTful
APIs for the Palo Alto Networks firewalls and Proofpoint TAP. For the connections to Intel Security
products, they used the OpenDXL McAfee Threat Intelligence Exchange “file_rep_sample.py.” These
open source OpenDXL scripts required only minor modifications. This enabled fast implementation
with a small amount of effort. An in-house study revealed that development time was less than 40
person hours.

Product #3
Credentials

Product #3
API

Product #1
Credentials

Product #1
API

Product #4
Credentials

Product #4
API

Product #4
Credentials

Product #4
API

Product #2
Credentials

Product #2
API

Product #1
Credentials

Product #1
API

Product #4
Credentials

McAfee
Product #1

McAfee
Product #4

McAfee
Product #2

McAfee
Product #3

Product #4
API

Product #2
Credentials

Product #2
API

Product #3
Credentials

Product #3
API

Product #1
Credentials

Product #1
API

Product #2
Credentials

Product #2
API

Product #3
Credentials

Product #3
API

Modify
Network
Policy

Modify
Network
Policy

Modify
Network
Policy

Modify
Network
Policy

Modify
Network
Policy

Distribute credentials

Integrate product APIs

Adjust network for
ports/protocol

Poll for changes
(simulate real-time events)

Figure 2. Pre-DXL security infrastructure (complex).

Technical Note
To consume threat
information, the
development team reused
the file_rep_sample.
py almost out the
box, updating only the
infrastructure details
from their environment.
Developers were quickly
able to build composite
enterprise reputations
fed by various security
devices (such as next-
generation firewalls) in the
McAfee Threat Intelligence
Exchange database that
the rest of the environment
could immediately react
on. For publishing threat
information, they used
the openweather_service_
wrapper.py and updated it
for every threat information
source (next-generation
firewall, email gateways, and
others) with the relevant
infrastructure details. The
RESTful APIs from those
devices wrapped the IoCs
that were generated and
subsequently parsed for
relevant details (destination
IP address, process SHA1
hash, and more to be
published on the OpenDXL
bus). See the DXL Open
Topic Threat Event Format
Specification, which details
how we name topics and
which fields we recommend
in the exchange process.

OpenDXL Idea Book 8

White Paper

McAfee
Product #2

Connections are persistent
(client-to-broker).

Communication is
bi-directional.

Data
Exchange

Layer

• Send Event to remote endpoint

McAfee
Product #4

McAfee
Product #1

McAfee
Product #3

Remote Endpoint

• Persistent connections are
established to the fabric from the
endpoints

• The persistent connections allow
for a bi-directional communication
without Firewall-related issues

All communication on single
fabric and protocol
Consistent API across products
(DXL API)
Decoupled (topic-based)
communication
Near real-time events
(no polling)
Centralized authentication and
authorization model
Persistent connections
established from endpoints to
fabric (Firewall friendly)

Figure 3. Security infrastructure with DXL integration (efficient).

Outcomes:

 ■ Threat data gathered by the Palo Alto next-generation firewalls, as well as the
intelligence collected by the sophisticated capabilities of Proofpoint with TAP, were
passed on to endpoints, allowing McAfee Endpoint Security to do what it natively does
(based on established policy)—namely, block, clean, or delete. This has resulted in more
robust protection against a greater number of threats on devices that users interact with
on a daily basis. Value already bought and paid for by the enterprise, while formerly only
partially leveraged, now extends all the way down to every endpoint in the environment.

 ■ The OpenDXL integration helps connect systems and threat data to more effectively
and speedily block phishing and spear-phishing threats, along with malicious web
downloads—all of which typically employ social engineering tactics to attack users, who
are the weakest link in the security chain.

 ■ The resource-constrained security department is experiencing increased efficiencies in
workflows and the infrastructure.

 ■ OpenDXL has maximized the return from the company’s security investment and has
acted as a force multiplier for the solutions in its multiple-vendor environment.

Use Case 2: Integration with a SIEM leveraging a TAXII bus
Description: Another large insurance company with approximately 50,000 globally deployed,
Intel Security-protected endpoints also initiated an OpenDXL integration with the IBM QRadar
SIEM solution, which employs STIX and TAXII to share threat intelligence information across this
multivendor security infrastructure. The integration, modeled after existing closed loop automations
of Intel Security products, enables sharing of indicators of compromise (IoCs) received from various
sources, including other OpenDXL-integrated sources (next-generation firewalls, non-Intel Security
intrusion prevention systems, and FireEye NX devices), as well as subscribed threat feeds.

Now, via a TAXII bus integration, this intelligence can be shared with IBM QRadar SIEM. When IBM
QRadar SIEM receives the information, it treats those IoCs as “observables” and, following its policy,
automatically does a historical search to determine whether anyone had come in contact with the
sample prior to the moment in time when the sample was identified as malicious.

https://www.mcafee.com/us/resources/white-papers/wp-advanced-targeted-attacks-takes-system.pdf
https://www.mcafee.com/us/resources/white-papers/wp-advanced-targeted-attacks-takes-system.pdf

OpenDXL Idea Book 9

White Paper

NGFW IPS Web Gateway Email Gateway

IOC 1
IOC 2
IOC 3
IOC 4

SandboxNetwork & Gateway

network and
endpoints adapt

payload is
analyzed

Import
“Indicators” into
ArcSight

Endpoints

SIEM

Endpoint Endpoint Endpoint Endpoint

DXL EcosystemDXL Ecosystem

Hailataxii

TAXII

Figure 4. Integration with a non-Intel Security SIEM leveraging a TAXII bus.

Technical implementation and components: The development environment consisted of the
OpenDXL Python client on a Linux system. An additional step involved the company’s existing TAXII
server, which has a RESTful API. The development team used the Python client to wrap the IoCs
from McAfee Threat Intelligence Exchange in the STIX format, and the TAXII server then shares them
with IBM QRadar SIEM.

Outcomes:

 ■ Enables successful sharing of threat intelligence in STIX format over OpenDXL and
TAXII environments.

 ■ Examines the environment for dormant threats that have escaped detection.

 ■ Ramps up the efficiency of the security infrastructure and security operations several
notches by allowing the IBM QRadar SIEM to receive and act on to the rich data
generated by varying threat/detection sources, including McAfee Threat Intelligence
Exchange.

Intel Security Innovation Alliance Integration
The next use case illustrates how independent software vendors in the Security Innovation Alliance
program have created new capabilities using DXL. For complete and up-to-date descriptions of
Intel Security Innovation Alliance partners that have fully integrated McAfee DXL products, visit the
partner directory.

Use Case 3: Broadcasting TrapX honeypot data to McAfee Advanced Threat Defense and
other subscribers
Description: TrapX is an Intel Security Innovation Alliance partner that specializes in deception-
based cybersecurity defense—emulating enterprise systems to lure attacks and reveal tactics
and intent. The objective of this integration was to broadcast the threat information gathered and
analyzed by the TrapX DeceptionGrid solution across both Intel Security solutions and endpoints
deploying other partner solutions, such as Rapid 7, Forcepoint, Avecto, and more. The existing
integration between McAfee Advanced Threat Defense and McAfee Threat Intelligence Exchange set
the stage for the OpenDXL integration.

https://www.mcafee.com/us/partners/partnerlisting.aspx?azFilter=&pFilter=data_exchange_layer&mFilter=&cFilter=false

OpenDXL Idea Book 10

White Paper

The moment attackers come in contact with a DeceptionGrid emulation, an alert is triggered, and the
injected malware is sent to McAfee Advanced Threat Defense, which swiftly and accurately analyzes
the threat and updates its file reputation. Working with McAfee Threat Intelligence Exchange, McAfee
Advanced Threat Defense broadcasts the data over DXL. The threat intelligence is then incorporated
into enforcement processes across other Intel Security and third-party solutions. Through OpenDXL,
TrapX achieves a one-to-many integration, enabling distribution of the data across a diverse security
environment.

Technical implementation and components: The TrapX integration with McAfee Advanced Threat
Defense was accomplished through the use of the McAfee DXL SDK, written in C++.

Outcomes:

 ■ Broadcasting the results of this type of advanced deception technology enables IT
security to find advanced threats that may bypass other security solutions.

 ■ Time-to-detection is significantly reduced.

 ■ Provides near real-time reputation information on new files that enter the environment.
Through OpenDXL, the enterprise environment is constantly updated, enabling disparate
security products to collaborate as they detect, protect, and correct with greater speed
and accuracy.

Use Case 4: Using McAfee ePO automation to act on high-confidence detection information from
other security products
Description: The new wrapper for McAfee ePO management APIs provides easy, fast options to use
the industry-leading management console to apply policies, tag systems, move groups, and trigger
other actions within McAfee ePO software. These capabilities are the most frequently used and
valued integrations available within McAfee ePO management APIs and permit more applications
to leverage centralized and efficient management. Possible sources of high-confidence detection
information could include products from other vendors, open source applications, cloud services,
in-house capabilities, and more. For example, McAfee ePO software could be used to more efficiently
manage risk by tagging a compromised system and adjusting risk posture based on the incoming
information, such as adding more restrictive data loss prevention policies or quarantining.

McAfee ePO McAfee
ePO
Web API

McAfee ePO
OpenDXL
Wrapper
Service

4. Send McAfee
ePO API request

3. Consume McAfee
ePO Request (set tags,
groups, and more) 2. Send McAfee

ePO request

1. Detection
triggers
script

DXL

OpenDXL
Orchestration
Service

Third-Party
Detection
Service

Figure 5. Non-DXL integrated third-party product.

OpenDXL Idea Book 11

White Paper

Technical implementation and components: The external software detects a security event and
triggers the automation script with a set of remediation actions. There is no registration required to
receive a triggering DXL event in this case, as remediation actions are generally activated via query/
response to a service. The script then sets into motion the necessary McAfee ePO actions via the
OpenDXL fabric. The McAfee ePO service wrapper enables McAfee ePO software to securely execute
the necessary response via OpenDXL.

One such scenario is integration with Cuckoo, an open source automated malware analysis tool
(similar to McAfee Advanced Threat Defense). By leveraging the Cuckoo API to gather results from
various file analyses, an OpenDXL script can be used to trigger an action in McAfee ePO software.
One example would be to apply a tag to that system and then apply restrictive security endpoint
policies via McAfee ePO tag-based policies.

Outcomes:

 ■ Increases the value of high-confidence detection information and distributes it across
the entire infrastructure.

 ■ Automatically triggers a response or policy change from McAfee ePO software to protect
systems better and faster.

 ■ Enables disparate security products to take advantage of the efficiencies of the McAfee
ePO management console.

And 10 More Ideas
In addition to the above case studies, the OpenDXL community is actively pursuing a variety of
other integrations. Here are just some of the ideas that may already have been published on
github.com/opendxl.

 ■ An IP reputation service to publish newly identified malicious or spammy IP addresses.

 ■ A wrapper for intrusion prevention tools (including Snort) to receive and respond to
OpenDXL events, taking action such as disconnecting communications, blocking an IP
address, or quarantining a host or workgroup.

 ■ DXL listeners for any countermeasure, varying the action to the enforcement available
in the countermeasure (delete file, blacklist domain/IP address, set watchlist, escalate
monitoring, or force scans for compliance, vulnerability, or malware). The master
example shows some of these. You can map to the functionality of your existing software.

 ■ A connector to open up SNMP and network management software to receive and
publish and call and respond to DXL events, simplifying response to network-oriented
threat data, such as command and control traffic.

 ■ Send memory dumps to a sandbox for process analysis and IoC identification.

 ■ Convert a threat intelligence feed (public, private, government, or industry) to a DXL topic
to enrich threat analysis.

 ■ Receive alerts via your Twitter account on DXL topics, which is a faster way of getting this
information than through email or other methods. Additionally, private Twitter accounts
can be used to share intelligence.

 ■ A DXL connector for the open source Postfix message transfer agent to enable Postfix to
block spam IP addresses and spam servers (needs other apps to publish the events)

 ■ Sensor/equipment connector to pass environmental and state data (such as equipment
temperature) to DXL and send alert when thresholds are reached, minimizing downtime
and sensor wear or keeping devices within optimal ranges.

 ■ Use DXL to create an alert in the SOC or other monitoring center when there is an urgent
alarm, turning digital alerts (such as from SIEM) into audible or visual alerts to ensure
human action.

http://docs.cuckoosandbox.org/en/latest/usage/results/

OpenDXL Idea Book 12

White Paper

Summary
The foregoing use cases—all with varying levels of complexity—are an overview of the creative
development opportunities afforded by OpenDXL. We hope these have inspired you to start your
own OpenDXL project. Bookmark and explore these pages for core resources.

 ■ Build Your Own OpenDXL Automation: A PDF tutorial anyone can download.

 ■ OpenDXL Python SDK: is located on GitHub, with software and tutorials for many
different integrations. Customers can also access the SDK with their grant number from
the Intel Security download site.

 ■ C++ and Java DXL SDKs are available for Intel Security Innovation Alliance partners
through the partner portal.

For more information, visit mcafee.com/dxl.

About Intel Security
Intel Security, with its McAfee product line, is dedicated to making the digital world safer and more
secure for everyone. www.intelsecurity.com. Intel Security is a division of Intel.

Intel and the Intel and McAfee logos, ePolicy Orchestrator and McAfee ePO are trademarks of Intel
Corporation or McAfee, Inc. in the US and/or other countries. Other marks and brands may be
claimed as the property of others. Copyright © 2017 Intel Corporation.

APPENDIX
Build Your Own OpenDXL Integration
The use cases in this guide demonstrate how your security solutions can benefit from sharing of data
and integration of actions within your infrastructure. Now, let’s look at the approach to take. To plan
your integration, you’ll need two components:

“Ingredients”: You create these by ensuring that security applications you’d like to leverage are
appropriately enabled for OpenDXL. These ingredients are the things that can publish or subscribe
to DXL content or that you can call or tell to take action over DXL as part of a script.

Native OpenDXL Python integrations: These lightweight scripts let you extend source code for your
applications and open source applications to let them publish to, subscribe to, and communicate via
the DXL fabric. On GitHub, you will find examples such as the weather station integration.

Application programming interface (API) service wrappers: You build an OpenDXL script to wrap
an application API and expose it as a DXL service on a DXL fabric. This type of integration does
not require access to the application’s source code and can be used to open up key features of an
application quickly. GitHub examples include our wrappers for McAfee Threat Intelligence Exchange,
McAfee Active Response, and McAfee ePO software.

Native DXL C++ and Java integrations: These integrate your source code with Intel Security source
code and require Intel Security Innovation Alliance partnership. Examples include most of the Intel
Security Innovation Alliance partners listed here.

“Recipe”: Next, you’ll need to create the orchestration script—that is the recipe—to send commands
to your ingredients via OpenDXL, expediting your desired outcome. The script, which can be
launched by another Python or OpenDXL script or OpenDXL connector, triggers one or more actions
by your ingredients. This script may be run on demand (manually), or automatically in response to a
specific OpenDXL event. It delivers security automation in the form of “if-then” logic.

partner portal
https://www.mcafee.com/us/solutions/data-exchange-layer.aspx
http://www.intelsecurity.com/

OpenDXL Idea Book 13

White Paper

Creating the Ingredients
To create the ingredients, you need to determine whether the desired product functionality is either
natively exposed via OpenDXL or is accessible via an existing, non-OpenDXL integrated API. If the
product provides the desired functionality via a native DXL integration, then you’re ready to begin. If
the product provides the desired functionality via a non-OpenDXL API, then you need to download
or create an API service wrapper for the product. The API service wrapper exposes the desired
functionality as an OpenDXL service. After you take care of this step, you’re ready to begin.

In the event the product does not provide the desired functionality, either via OpenDXL or an API,
you cannot automate a particular product’s functionality via OpenDXL. At this point, you may want
to request that the vendor natively support OpenDXL to expose the desired functionality in a future
release.

Creating the Recipe
Now that you have prepared the ingredients, you’re ready to create the recipe for the integration. To
do so, you need to create an OpenDXL script that can either be invoked on demand or automatically
in response to a specific OpenDXL message.

Example of an OpenDXL Integration Scenario
To give you an idea of how to go about an OpenDXL integration, let’s explore an example where we
create security automation that leverages two common security products: a firewall and a network
access control (NAC) solution. Our objective is to use security automation to command the firewall to
block all connections to a device inside our network at the IP address we supply. The NAC solution
would then isolate the system on a remediation network with limited access to internal resources.

Start by creating the ingredients:

Check the firewall and confirm it has a native OpenDXL integration that does exactly what we’re
looking for. In this scenario, we discover that it does indeed provide an OpenDXL service that
supports requests sent to the topic “Company.Firewall.BlockIP” with an IP address parameter.

Check the NAC solution. In this case, we discover that the NAC solution does not natively support
OpenDXL, but it does have an existing API that provides the desired functionality. There is an API
method, “TransferSystem,” that takes an IP address (of the device that needs to be moved) and a
network identifier (as the target network to where the system needs to be moved) as parameters.

Check the OpenDXL community to see if there is an API service wrapper available. We find that there
is none, so this becomes our first OpenDXL scripting task. We need to create an API service wrapper
that exposes the “TransferSystem” API method as a DXL service topic. We check the OpenDXL SDK
and create the API service wrapper.

Now we’re ready to move on to creating the recipe, that is, building the automation script. First, we
check the OpenDXL SDK for information on how to build an automation script, and then we copy
the template.

In the automation script, we invoke the two Open DXL services by sending two requests. The
first request is sent to the “Company.Firewall.BlockIP” topic to instruct the firewall to block
communication to/from the specified IP. The second request is sent to the “TransferSystem” topic
we registered in our API service wrapper, which, in turn, calls the NAC solution API to isolate the
system at the specified IP on the specified remediation network.

We want to trigger our automation script manually on demand to ensure we’ve successfully built
the ingredients and recipe for our security automation use case.

White Paper

McAfee. Part of Intel Security.
2821 Mission College Boulevard
Santa Clara, CA 95054
888 847 8766
www .intelsecurity .com

Reality Check: OpenDXL versus Other Integration Models
While we think OpenDXL fills a critical need for the industry, it is not a panacea. OpenDXL is all about
rapidly creating security automation that leverages disparate security tools from different vendors
to achieve consistent, beneficial outcomes. Any product/component that has an API (DXL-connected
or not) can be leveraged within this automation. OpenDXL is helpful in integrating components that
support programmatic usage and/or programmatic integration but have not yet integrated with
McAfee DXL. In this case, service wrappers can be used to connect these types of applications with
OpenDXL.

The chart below summarizes possible integration scenarios, applications, and recommended tools,
starting with the best uses of DXL.

Integration Type Who Does the Work Value Add Recommended Tools

OpenDXL Python Scripters Easy and fast way to create an
OpenDXL ingredient or automate
ingredients in scripts

Open Source package of your
choice

OpenDXL Python Client

OpenDXL Service
Wrapper

Scripters Exposes existing APIs as DXL services
for other recipes to easily use

Example code of github.com/
opendxl

DXL C++ or Java Security application
owner (must be Intel
Security Innovation
Alliance partner)

Always-on connectivity to the
messaging fabric

C++ and Java rather than Python
for primary workflows, (example:
McAfee Threat Intelligence
Exchange server to its client)

Intel and the Intel logo are registered trademarks of the Intel Corporation in the US and/or other countries. McAfee and the McAfee logo are registered
trademarks or trademarks of McAfee, Inc. or its subsidiaries in the US and other countries. Other marks and brands may be claimed as the property
of others. The product plans, specifications and descriptions herein are provided for information only and subject to change without notice, and are
provided without warranty of any kind, express or implied. Copyright © 2017 McAfee, Inc. 2603_0317_wp-open-dxl-integration-guide_ETMG

http://www.intelsecurity.com

